Water and Fire in a Changing Climate

Central Coast Climate Collaborative Inaugural Summit

Daniel Feldman
Lawrence Berkeley National Laboratory

With Chaincy Kuo¹, Carl Pennypacker², Tim Ball³, Jan Mandel⁴, Adam Kochanski⁵, Bill Kruse⁶, Vincent Ambrosia⁷, Everett Hinkley⁸, Farnoush Banaei-Kashani⁴, Andy Jones¹, Paul Ullrich⁹

¹ Earth and Environmental Sciences Area, Lawrence Berkeley Laboratory
² University of California-Berkeley, Berkeley, CA
³ Fireball Industries Inc., Reno, NV
⁴University of Colorado-Denver, Denver CO
⁵ University of Utah, Salt Lake City, UT
⁶ Kruse Imaging, Palo Alto, CA
⁷ NASA Ames Research Center, Moffett Field, CA
⁸ United States Forest Service, Washington, DC
⁹ University of California-Davis, Davis, CA
Greenhouse gases add energy to the atmosphere.

At a basic level, this will lead to rising temperatures globally.

But other changes are expected and spatial patterns matter!
County-Level Predictions

- Predictions at the county level are hard.
- There is high confidence that the Central Coast will warm due to climate change.
- Changes in precipitation and fire much less certain.
• The climate service provided to the local scale by the global models is a work-in-progress.

• Stakeholders need the best information at the local level.

• Some models are better suited for Central Coast climate predictions than others.

• We can evaluate models on a number of metrics, and build new capabilities to serve, for example, the Central Coast.
Improved Modeling of California’s Hydroclimate

HYPERION
UNDERSTANDING HYDROCLIMATE DATA WITH USE-INSPIRED METRICS

Regional Climate Datasets
Grid Metadata

Pre-Processing
TempestRemap, NCO

Hydrologic Models
ALM-MOSART-WM
CLM-PAWS
WEAP

Model Performance Report
Observational Data

Metric Evaluation
Meteorological Metrics

Metric Evaluation
Integrated Metrics

Metric Evaluation
Hydrologic Metrics

Evaluating Metrics
Resolution and Metrics

- Higher model spatial resolution helps.
- We can also evaluate models by metrics that we care about.
Meteorological Metrics

Precipitation Character and Extremes: 24 metrics for precipitation characteristics and precipitation extremes have been developed.

Mesoscale Convective Systems: Metrics based on MCS tracking in the early summer/late spring.

North American Monsoon System: Metrics based on timing.

Atmospheric Rivers: Initiated a collaboration with the ARTMIP project.

Coastal Storms: A new tropical cyclone tool has been developed and optimized against the IBTrACS dataset. A new metric for overland precip has been developed.

Sea Breeze: 2 metrics based on sea breeze.
• For wildfires, the number of fires has decreased, but acreage has increased and costs have increased a lot!

• CalFire estimates that fires now cost Californians $70/person/yr.

• There is a pressing need to bend the curve of growth for fires.
Wildfires require fuel availability, low fuel-moisture, (un)favorable weather, and ignition.

Observations and data-processing are needed to monitor risk. Machine-learning techniques can find smoke and fires automatically.

Remote Automatic Weather Stations (RAWS) in California. Used to predict fire behavior and monitor fuels. http://www.raws.dri.edu
• Fires sometimes create their own weather, but forecasts are possible!

• Satellite and aircraft imagery and weather-service data can be used to run a fire-weather forecast model.
• *Climate model predictions of fire risk are a work-in-progress.*

• *We are building dynamic vegetation to capture vegetation growth, mortality, and moisture.*